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Abstract

Perinatal brain damage in the mature fetus is usually brought about by severe intrauterine asphyxia following an acute reduction of the
uterine or umbilical circulation. The areas most heavily affected are the parasagittal region of the cerebral cortex and the basal ganglia.
The fetus reacts to a severe lack of oxygen with activation of the sympathetic—adrenergic nervous system and a redistribution of cardiac
output in favour of the central organs (brain, heart and adrenals). If the asphyxic insult persists, the fetus is unable to maintain circulatory
centralisation, and the cardiac output and extent of cerebral perfusion fall. Owing to the acute reduction in oxygen supply, oxidative
phosphorylation in the brain comes to a standstill. The Na* /K™ pump at the cell membrane has no more energy to maintain the ionic
gradients. In the absence of a membrane potential, large amounts of calcium ions flow through the voltage-dependent ion channel, down
an extreme extra- /intracellular concentration gradient, into the cell. Current research suggests that the excessive increase in levels of
intracellular calcium, so-called calcium overload, leads to cell damage through the activation of proteases, lipases and endonucleases.
During ischemia, besides the influx of calcium ions into the cells via voltage-dependent calcium channels, more calcium enters the cells
through glutamate-regulated ion channels. Glutamate, an excitatory neurotransmitter, is released from presynaptic vesicles during
ischemia following anoxic cell depolarisation. The acute lack of cellular energy arising during ischemia induces almost complete
inhibition of cerebral protein biosynthesis. Once the ischemic period is over, protein biosynthesis returns to pre-ischemic levels in
non-vulnerable regions of the brain, while in more vulnerable areas it remains inhibited. The inhibition of protein synthesis, therefore,
appears to be an early indicator of subsequent neuronal cell death. A second wave of neurona cell damage occurs during the reperfusion
phase. This cell damage is thought to be caused by the post-ischemic release of oxygen radicas, synthesis of nitric oxide (NO),
inflammatory reactions and an imbalance between the excitatory and inhibitory neurotransmitter systems. Part of the secondary neuronal
cell damage may be caused by induction of a kind of cellular suicide programme known as apoptosis. Knowledge of these
pathophysiological mechanisms has enabled scientists to develop new therapeutic strategies with successful resultsin animal experiments.
The potential of such therapies is discussed here, particularly the promising effects of i.v. administration of magnesium or post-ischemic
induction of cerebral hypothermia. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Y ear after year, around a thousand children in Germany
alone incur brain damage as a result of a perinatal hy-
poxic—ischemic insult ([249], Perinatal statistics for the
Federal Republic of Germany). Depending on the extent
and location of the insult these children can develop
spastic paresis, choreo-athetosis, ataxia and disorders of
sensomotor coordination (Fig. 1). Nor is it uncommon for
damage to the auditory and visual systems and impairment
of intellectua ability to develop later [339]. The resulting
impact on the children affected and their families is con-
siderable and their subsequent care demands a high level
of commitment and co-operation between pediatricians,
child neurologists, physio-, speech-, and psychotherapists
and other specialists. Conservative estimates of the costs to
society for treatment and care of such cases per birth year
lie around 1 billion German marks. However, despite the
severe clinical and socio-economic significance, no effec-
tive therapeutic strategies have yet been developed to
counteract this condition; one possible explanation being
that perinatal management up to now has focused on
preventing hypoxic—ischemic brain damage altogether
[339]. The pathophysiology of ischemic brain lesions has
not been investigated in depth until recently. One of the
most urgent tasks for obstetricians and neonatologists will
now be to develop therapeutic strategies from these patho-
physiological models and to test them in prospective clini-
cal studies.

This review article presents our current understanding
of the pathophysiology of hypoxic—ischemic brain damage
in mature neonates. The situation in premature neonates is
discussed separately wherever necessary. We first ded
with the causes of ischemic brain lesion, especially intra
uterine asphyxia of the fetus, and their effects on the
cardiovascular system and cerebral perfusion. Next, the

typical neuropathological findings arising from reduced
perfusion of the fetal brain are described. Also of key
importance are the cellular mechanisms that are triggered
by an ischemic insult. These will be discussed in detail,
with particular emphasis on aterations of energy
metabolism, intracellular calcium accumulation, the release
of excitatory amino acids and protein biosynthesis. A
considerable portion of neuronal cell damage first occurs
during the reperfusion phase following an ischemic insult.
The formation of oxygen radicals, induction of the NO
system, inflammatory reactions and apoptosis will there-
fore be discussed in depth in this context. Finally, thera-
peutic concepts will be presented that have developed out
of our understanding of these pathophysiological processes
and been tested in anima experiments. Of these, i.v.
administration of magnesium and induction of cerebra
hypothermia appear to be of the greatest clinical relevance.

2. Causes of hypoxic—ischemic brain lesions in neonates

With a few exceptions, acute hypoxic—ischemic brain
lesions in neonates are caused by severe intrauterine as-
phyxia [339]. This is usually brought about by an acute
reduction in the uterine or umbilical circulation (Review:
Ref. [157]), which in turn can be caused by abruptio
placentae, contracture of the uterus, vena cava occlusion
syndrome, compression of the umbilical cord, etc. (Table
1).

3. Circulatory centralisation and cerebral perfusion
The fetus reacts to an oxygen deficit of this severity by

activating the sympathetic—adrenergic system and redis-
tributing the cardiac output in favour of the central organs
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(brain, heart and adrenals) (Review: Ref. [157]). The low-
ered oxygen and raised carbon dioxide partial pressures
lead to vasodilatation of the cerebral vascular bed [163,172]
causing cerebral hyperperfusion. This affects the brainstem

Table 1
Causes of severe intrauterine asphyxia

(1) Uteroplacental unit

- Contracture of the uterus

- Vena-cava-occlusion syndrome
- Hypotension

- Placenta praevia

- Abruptio placentae

(1) Umbilical vessels
- Compression of umbilical vessels
- Insertio velamentosa

Fig. 1. Spastic diplegiain children with cerebral palsy [51].
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in particular, while the blood flow to the white matter of
the brain is hardly increased at al (Refs. [12,164,196],
Review: Ref. [157]). Depending on the extent of the
oxygen deficit and the maturity of the fetus, this cerebral
hyperperfusion can reach two to three times the origina
rate of blood flow. Paradoxically, complete arrest of uter-
ine perfusion is found to cause an initial reduction of blood
flow to the brain [156]. If the oxygen deficit persists, the
anaerobic energy reserves of the heart become exhausted.
The cardiac output and the mean arteria blood pressure
fall [289]. At mean arterial blood pressures of below
25-30 mmHg, there is an increasing loss of cerebra
autoregulation, and a consequent reduction of the cerebral
blood flow [195]. This affects the parasagittal region of the
cerebrum [276] and the white matter [59,316] most of all.
Immature fetuses seem to be particularly endangered by
their limited ability to increase blood flow to the white
matter through vasodilatation [316].



110 R. Berger, Y. Garnier / Brain Research Reviews 30 (1999) 107-134

Cerebral Blood Flow

3007 IIschemiaI Recovery l

250 1

200

150 1

100

ml / min x 100g

50 7

0 H i
Control 37 277 40° 4 h 72 h

Time

Fig. 2. Blood flow to the cerebrum ((ml /min) X 100 g) in fetal sheep near
term before, during, and after global cerebral ischemia of 30-min dura-
tion. Cerebral ischemia was induced by occluding both carotid arteries.
Results are given as mean+ S.D. The data were analysed for intragroup
differences by multivariate analysis of variance for repeated measures.
Games—Howell-test was used as post-hoc testing procedure (**P < 0.01,
*#%P < 0,001 (ischemia,/recovery vs. control)) [33,39].

If the supply of oxygen to the fetus can be improved,
cerebral hyperperfusion is brought about by the progres-
sive post-asphyxial increase in cardiac output (Ref. [282],
Review: Ref. [157]). This hyperperfusion can aso be
demonstrated in experiments using animal models of iso-
lated cerebral ischemia (Fig. 2) [33]. Vasodilatation in-
duced by acidosis in cerebral tissues and a reduction of
blood viscosity at higher rates of blood flow have been
put forward as possible causes of such hyperperfusion
[182,293,317]. The initial hyperperfusion of the brain is
followed directly by a phase of hypoperfusion (Fig. 2)
[33,283]. Surprisingly, the shorter the duration of ischemia,
the more marked this hypoperfusion appears to be. Post-
ischemic hypoperfusion is characterised by a dissociation
of the disturbed CO,-reactivity from autoregulation of the
cerebral vascular bed which remains intact. This leads to
vasoconstriction and an uncoupling of blood flow and
metabolic activity (Review: Ref. [147,302]). Post-ischemic
hypoperfusion may be caused by oxygen radicals formed
during the reperfusion phase after ischemia. Rosenberg et
al. demonstrated that this phenomenon can be prevented by
inhibiting the synthesis of oxygen radicals after ischemia
[283]. In addition, a so-called no-reflow phenomenon can
be observed after severe cerebral ischemia[8]. This failure
of reperfusion in various brain areas is a consequence of
the greater viscosity of stagnant blood, compression of the
smallest blood vessels through swelling of the perivascular
glia cells, formation of endothelia microvilli, increased
intracerebral pressure, post-ischemic arterial hypotension
and increased intravascular coagulation. The extent of the

no-reflow phenomenon depends on the duration and type
of cerebral ischemia It is most pronounced when the
vessels are engorged with blood after venous congestion
(Review: Ref. [147]). Directly after post-ischemic hypoper-
fusion, the cerebral blood flow recovers or overshoots into
a second phase of hyperperfusion (Fig. 2) [33,271]. Since
this hyperperfusion is often accompanied by an isoelectric
encephalogram, it is regarded as an extremely unfavour-
able prognostic factor [271].

4. Neuropathology of hypoxic—ischemic brain lesions

There are essentially six forms of hypoxic—ischemic
brain lesion (Table 2): selective neuronal cell damage,
status marmoratus, parasagittal brain damage, periventricu-
lar leucomalacia, intraventricular or periventricular haem-
orrhage and focal or multifocal ischemic brain lesions
(Table 2) [102,339].

In mature fetuses, selective neuronal cell damage is
found most frequently in the cerebral cortex, hippocampus,
cerebellum and the anterior horn cells of the spina cord
[96,179,241,279,310,339]. As shown in animal experi-
ments, the damage occurs after ischemia of only 10 min
[351]. Within the cortex, the border zones between the
major cerebral arteries are the worst affected. The cell
damage is mostly parasagittal and more marked in the
sulci than in the gyri, i.e, the pattern of distribution is
strongly dependent on perfusion. The neurons show the
most damage while the oligodendrocytes, astroglia and
microglia remain largely unscathed (Review: Ref. [339]).

Status marmoratus, which is observed in only 5% of
children with hypoxic—ischemic brain lesions, chiefly af-
fects the basal ganglia and the thalamus. The complete
picture of the disease does not emerge until 8 months after
birth athough the insult begins to take effect during the
perinatal period. Status marmoratus is characterised by loss

Table 2
Hypoxic—ischemic brain damage in the fetus and neonate

Neurologic lesion Topographic localization

cortex cerebri

cerebellum

hippocampus

anterior horn cells of the spinal cord
basal ganglia

thalamus

cortex cerebri and subcortical
substantia alba

Periventricular leucomalacia substantia alba

Intra-, periventricular hemorrhage germinal matrix

Selective neuronal necrosis

Status marmoratus

Parasagittal cerebral injury

substantia alba

ventricles
Focal /multifocal ischemic cortex cerebri and subcortical
Brain damage substantia alba
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of neurones, gliosis and hypermyelination. The increased
number of myelinated astrocytic cell processes and their
abnormal distribution give the structures affected, espe-
cialy the putamen, a marbled appearance [96,279,280].
Parasagittal brain damage caused by cerebral ischemia
is mostly reported in mature neonates [96,179,241,279,
310,339] and affects the parietal and occipital regions in
particular. The damage usually arises through insufficient
perfusion of the border zones between the main cerebral
arteries during cerebral ischemia This form of damage has
been reproduced in animal models (Fig. 3). The extent of
the brain lesions was found to be closely dependent on the
duration and severity of the cerebral ischemia [33,351].
Interestingly, in the cortex, sulci are more badly damaged
than the gyri. This arises from the special way in which the
blood vessels in the cortex and surrounding white matter
develop. When the sulci take shape and deepen in mature
neonates, the penetrating blood vessels branching out from
the meningeal arteries are forced into a hairpin bend as
they cross the border from grey matter into white matter
[79]. This produces a triangular area within the white
matter at the base of the sulci through which hardly any
vessels pass. Thus, any reduction in the perfusion of this
region causes most damage to the sulci of the cortex

Neuronal Cell Damage

M Control (n=7)
B Lubeluzole (n=6)
O Flunarizine (n=6)

Score

Parasagittal

Lateral

Fig. 3. Neuronal cell damage in the cerebrum of fetal sheep near term 72
h after induction of global cerebral ischemia of 30-min duration. Cerebral
ischemia was induced by occluding both carotid arteries. Neuronal cell
damage was quantified as follows: 0-5% damage (score 1), 5-50%
damage (score 2), 50-95% damage (score 3), 95-99% damage (score 4),
and 100% damage (score 5). Neurona cell damage was most pronounced
in the parasagittal regions, whereas in the more lateral part of the cortex
only minor neuronal damage occurred. There was a tremendous reduction
in neuronal cell damage after pre-treatment with the calcium antagonist
flunarizine (1 mg/kg estimated fetal body weight), whereas glutamate
antagonist lubeluzole failed to protect the fetal brain. Vaues are given as
mean+ S.D. The data were analysed within and between groups using a
two-way ANOVA followed by Games—Howell post-hoc test (¥ P < 0.05,
##P < 0.01 (treated vs. untreated)) [39,98].

[79,318]. This pattern of damage seems to correspond to
that observed clinically in cases of subcortical leucomala-
cia[149,331].

Periventricular leucomalacia is characterised by damage
to the white matter dorsal and lateral to the lateral ventricle
[179,241]. It occurs most frequently in immature fetuses
and chiefly affects the radiatio occipitalis at the trigonum
of the lateral ventricle and the white matter around the
foramen of Monro. At 6-12 h after an ischemic insult,
necrotic foci can be observed in these areas [15]. These are
characterised by swelling and rupture of neuronal axons.
Necrotic oligodendrocytes are also found, especially ones
undergoing differentiation or taking part in myelinisation.
Over the next 24 to 48 h, activated microglia are seen
more and more frequently. In 25% of cases, periventricular
leucomalacia is accompanied by parenchymatous haemor-
rhaging [11,80,261]. As the disease progresses, small cysts
develop out of the necrotic foci that can be identified by
ultrasonography [81,144,261]. As gliosis progresses the
cysts begin to constrict. The lack of myelinisation owing to
the destruction of the oligodendrocytes and an enlargement
of the lateral ventricle then become the most prominent
features of the disease [75,280,318,319]. Periventricular
leucomalacia around the radiatio occipitalis at the trigonum
of the lateral ventricle and in the white matter around the
foramen of Monro arises through vascular problems. Espe-
cidly in immature fetuses, the ability to increase blood
flow by vasodilatation during and after a period of arterial
hypotension appears to be extremely limited in these brain
areas [316]. After the 32nd week of pregnancy the vascu-
larisation of these vulnerable areas is considerably in-
creased and the incidence of periventricular leucomalacia
thereby reduced.

Intra- or periventricular haemorrhage is another typical
lesion of the immature neonate brain [339]. It originates in
the vascular bed of the germina matrix, a brain region that
gradualy shrinks until it has almost completely disap-
peared in the mature fetus [79,131,180,231,235,315]. Blood
vessels in this brain region burst very easily [176,262].
Sub- and post-partum fluctuations in cerebral blood flow
can therefore lead to rupture of these vessels causing intra-
or periventricular haemorrhage [34,97,107,143,158,
206,221]. The bleeding is sometimes exacerbated by fac-
tors affecting the aggregation of thrombocytes or the coag-
ulating process [7,198,299]. Possible consequences of a
brain haemorrhage are destruction of the germinal matrix,
a periventricular haemorrhagic infarction in the cerebral
white matter or hydrocephalus (Review: Ref. [339]).

Focal or multifocal brain damage usually occurs within
areas supplied by one or more of the main cerebral arter-
ies. Thisform of insult is not normally observed before the
28th week of pregnancy. The incidence then rises with
increasing maturity of the fetus[17]. Histologically, it is an
infarct involving all types of cells (neurones, oligodendro-
cytes, astrocytes and endothelial cells). In the days follow-
ing an insult, microglia and astrocytes migrate into the
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Table 3

Concentrations of high-energy phosphates in the cerebral cortex of fetal
guinea pigs near term during acute asphyxia caused by arrest of uterine
blood flow [27,28]. Values are given as mean+ S.D.

Brain metabolite [wmol /g]

Control Asphyxia Asphyxia
(2 min) (4 min)
Adenosine triphosphate 259+4+0.15 2.03+0.21%* 1.35+0.32**
Adenosine diphosphate 0.37+0.07 0.76+0.13** 1.05+0.15%*

Adenosine monophosphate 0.04+0.02 0.17+0.09%* 0.52+0.21**

**p < 0.01 (asphyxia vs. control).

infarct zone [96,181,204,242,243,277]. The infarct is usu-
ally caused by arterial embolism or venous thrombosis. In
90% of the cases, the arterial occlusion is unilateral and
mainly involves the left arteria cerebri media (Refs.
[153,298,328], Review: Ref. [339]). Unlike the situation in
the mature brain, this form of brain infarct leaves no scar
tissue but often produces one or more cysts. They occur as
aresult of the high water content of the immature brain, an
insufficient ability to myelinate and an inadequate astro-
cytic response to an ischemic insult. The scar-like struc-
tures running across the infarcted area are seldom pro-
nounced in immature brain tissue. Thus, the morphological
changes brought about by an ischemic insult also vary
depending on the maturity of the brain [161,339]. Focal or
multifocal brain lesions following infections, trauma or
twin births, especially monochoriotic ones, are also rela-
tively common [22,25,46,268,291,356]. It is thought that

Energy failure/depolarization
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thromboplastic material or emboli from a miscarried co-
twin sometimes occludes the cerebrovascular circulation of
the living twin. Brain damage may also be caused by
anemia or polycythemia and subsequent cardiac insuffi-
ciency and cerebral hypoperfusion arising from a feto-fetal
transfusion. Alternatively, focal or multifocal brain dam-
age can arise from systemic arterial hypotension, so that
there is little distinction between this and other forms of
brain damage such as selective neuronal cell damage,
status marmoratus, parasagittal brain damage or periven-
tricular leucomalacia (Review: Ref. [339]).

5. Energy metabolism and calcium homeostasis

The normal functioning of the brain is not only depen-
dent on an adequate oxygen supply but also requires
sufficient glucose. Transmission of electric impulses and
biosynthetic reactions within the neurones require a contin-
uous source of energy which is produced by the break-
down of glucose. The most important metabolic pathway
for glucose is aerobic glycolysis by which glucose is
metabolised to pyruvate. Pyruvate is then metabolised
further through the energy-producing citric acid cycle. The
electrons thereby released yield energy as they pass down
the respiratory chain in the mitochondria The energy
released on each transfer of electrons is incorporated into
molecules of ATP, synthesized from the precursor ADP
and high energy phosphate (Pi). ATP is the basic source of
energy for all energy requiring reactions in the brain [337].
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Whereas, during moderate hypoxemia, the fetus is able
to maintain cerebral metabolism and adequate levels of
ATP by speeding up the rate of anaerobic glycolysis
[29,30,35], an acute reduction of the fetal oxygen supply
will lead to a breakdown of energy metabolism in the
cerebral cortex within afew minutes (Table 3) [27,28]. The
ionic gradients for Na*, K* and Ca?* across the cell
membranes can no longer be regulated since the Na*/
K*-pump stops working through lack of energy. The
membrane potential approaches 0 mV [133]. The energy
depleted cell takes up Na*, and the subsequent fal in
membrane potential induces an influx of CI~ ions. This
intracellular accumulation of Na* and ClI~ ions leads to
swelling of the cells as water flows in through osmosis.
Cell oedema is therefore an inevitable consequence of
cellular energy deficiency [305].

In addition, loss of membrane potential leads to a
massive influx of calcium down the extreme extra- /intra-
cellular concentration gradient. It is currently thought that
the excessive increase in intracellular calcium levels, the
so-called calcium-overload, leads to cell damage by acti-
vating proteases, lipases and endonucleases [305]. Some of
the cellular mechanisms that are activated by the calcium
influx occurring during ischemia are shown in Fig. 4.
ateration of the arachidonic acid cycle affecting prosta-
glandin synthesis, disturbances of gene expression and
protein synthesis and increased production of free radicals
and obstruction of the axona transport system through
disaggregation of microtubuli.

6. Excitatory neurotransmitters

As early as 1969, Olney succeeded in demonstrating
that neuronal cell death could be induced by the exogenous
application of glutamate, an excitatory neurotransmitter
[252]. In subsequent years, this observation was confirmed
in both immature and adult animals of various species
including primates [253]. In 1984, Rothman showed that
glutamate antagonists could prevent anoxic cell death in
hippocampal tissue cultures [285]. That same year, Ben-
veniste et al. reported an excessive release of glutamate
into the extracellular space during cerebral ischemia in
vivo [24], from which they concluded that glutamate might
play an important role in neurona cell death following
ischemia [256,285—287].

Glutamate activates postsynaptic receptors, consisting
of five subunits, that form ionic channels permeable
to cations (Fig. 5) [294]. Three classes of ionotropic
glutamate receptors have been identified on the basis
of their pharmacological response to specific agonists such
as amino-3-hydroxy-5-methyl-4-isoxazole propionate
(AMPA) kainate (KA) and N-methyl-p-aspartate (NMDA).
These are referred to as the AMPA-, KA- and NMDA-re-
ceptors [230]. The corresponding channels are permeable

F Postsynaptic
- NMDA

G

g

T >; AMPA | lonotropic
Q - kainate

A

T —>

E

Metabotropic

Fig. 5. Regulation of glutamate-mediated synaptic transmission. After
depolarization of the presynaptic neuron vesicular glutamate is released
by exocytosis into the synaptic cleft. Released glutamate activates post-
synaptic ionotropic (NMDA, AMPA, Kainate) receptors and pre- or
postsynaptic metabotropic (G-protein coupled) receptors. Glutamate ac-
tion is terminated by Na*-dependent uptake in the presynaptic neuron as
well asin glial cells[248].

to Na* and K™ ions, while those of the NMDA-receptor
aso exhibit Ca?*-permeability. Glutamate also activates
the metabotropic receptors that regulate intracellular G-
protein signal cascades [239]. The best characterised recep-
tor in this family is the quisgualate receptor that mediates
the hydrolysis of phosphatidylinositol-4,5 biphosphonate
(PIR,) into the messenger molecules 1,4,5-triphosphate
(IPy) and diacyl-glycerol. The activation of each of these
receptors leads to an increase in the levels of free calcium
in the cell cytoplasm. The NMDA-receptor regulates a
calcium channel, the metabotropic receptors induce an
emptying of intracellular calcium stores while the
AMPA /KA receptors open a voltage-dependent calcium
channel by membrane depolarisation. The increase in free
calcium within the cell activates proteases, lipases and
endonucleases that then initiate processes leading to cell
death [62,303,304].

There is no longer any doubt that glutamate release
plays a critical role in neurona cell death after focal
cerebral ischemia such as that caused by an arterial embo-
lus [217]. Glutamate antagonists have been shown to exert
a strong neuroprotective effect against hypoxic—ischemic
brain damage in adult [174,263,336] and even in neonatal
animals [10,93,101,138,212,246,254]. In neonatd rats, it
was shown that glutamate release during and after an
hypoxic—ischemic insult could evoke epileptogenic activ-
ity and that this effect was dependent on the maturity of
the brain. In rats, the most marked effect was observed 10
to 12 days after birth (Fig. 6) [159]. The reason for this
seems to be a developmental change in the subunits of the
glutamate receptor which increases the neurone's perme-
ability to calcium [160,161]. Furthermore, the levels of
GABA, one of the most important inhibitory neurotrans-
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Fig. 6. EEG-recording during acute hypoxia (3% O,) in rats of different
post-gestational ages. Epileptogenic activity is registered in 10—12-day-old
rats (P10-12) during hypoxia, whereas in the older animals (P50—60)
isoelectric EEG-activity is registered [159,161].

mitters in neuronal tissue, are very low at this stage of
development [70,255,313].

As shown in adult animals, epileptogenic impulses in
the vicinity of a brain infarct cause a considerable rise in
metabolic activity. In an inadequately perfused section of
brain tissue such as the penumbra surrounding an infarct,
this can rapidly lead to an imbalance between cell
metabolism and blood circulation, resulting in brain dam-
age [148]. In addition, the formation of LTPs (long-term
potentials), that play an important role in synaptic plastic-
ity and hence, in learning processes, may be disturbed by
the induced epileptogenic activity [42]. Long-term neuro-
logical damage is the inevitable consegquence in the chil-
dren affected.

In global ischemia, such as that caused by cardiac
insufficiency, the situation is quite different to that in focal
ischemia. As shown in adult animals, it is far less clear
whether glutamate is directly involved in neuronal cell
death [2,4,50,183,187,326,344]. As Hossmannn points out
in his 1994 review article, a number of observations argue
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Fig. 7. Protein synthesis rate in hippocampa slices from mature fetal
guinea pigs 12 h after in vitro ischemia. The ischemic period lasted
between 20 and 40 min (I 20, | 30, | 40). Protein synthesis rate was not
affected neither by application of glutamate nor by glutamate antagonists
(MK-801 [100 wM], kynurenic acid [500 wM]). Vaues are given as
mean+ S.D. Statistical analysis was performed by ANOVA followed by
Scheffé's F-test (*P < 0.05, **P <0.01, ***P < 0.001 [ischemia vs.
control]) [36].
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against any major involvement of glutamate in processes
leading to neuronal cell death after global ischemia [148].
(1) Neither the pattern of glutamate release during is-
chemia nor the cerebral distribution of glutamate receptors
matches the regional manifestation of brain damage after
global ischemia[68,105,208,225]. (2) Glutamate toxicity in
cell cultures from vulnerable brain areas was found to be
no higher than in cultures from non-vulnerable regions
[87,148]. (3) In contrast to the effects of in vitro ischemia,
application of glutamate to cell cultures or hippocampal
tissue slices caused no prolonged inhibition of protein
synthesis [58,84,87].

Since then, the possibility of glutamate playing a key
role in the induction of brain damage either during or
directly after global ischemia, even in the immature brain,
has been effectively excluded by the following observa
tions: Application of glutamate or glutamate antagonists to
hippocampal slices from guinea pig fetuses did not affect
post-ischemic protein biosynthesis, a parameter used as an
early marker of neuronal cell death (Fig. 7) [36]. Further-
more, the glutamate antagonist lubeluzole was found to
have no neuroprotective effect in a model of cerebral
ischemia in mature sheep fetuses (Fig. 3, Ref. [98]). How-
ever, it is possible that later, during the reperfusion phase
after cerebral ischemia, glutamate-induced epileptogenic
activity does cause brain damage. This possibility will be
discussed further on.

7. Protein biosynthesis

As animal experiments show, inhibition of protein syn-
thesis plays a key role in the post-ischemic processes
leading to neuronal cell damage [146]. Protein synthesis is
reduced both during ischemiaand in the early post-ischemic
phase in vulnerable and non-vulnerable brain areas [171].
At the end of the ischemic period, protein synthesis in
non-vulnerable regions recovers to pre-ischemic levels,
while in vulnerable regions it remains inhibited [45,
324,347]. Thus, the inhibition of protein synthesis appears
to be an early indicator of subsequent neurona cell death
[146]. This observation ties in with the results of experi-
ments demonstrating the neuroprotective effect of hy-
pothermia or barbiturates after cerebral ischemia[348,352].
Shortly after cerebral ischemia, the usua inhibition of
protein synthesis set in, however, the recovery phase in the
normally vulnerable areas was now much shorter (Fig. 8),
and was accompanied by far less pronounced neuronal cell
damage. Similar findings were reported in connection with
developmental variations in the response of the brain to
ischemic insults: Protein synthesis in the fetal brain was
found to recover much faster from ischemic insults than
that in adult brains [31]. The prolonged inhibition of
protein synthesisis, therefore, an early indicator and possi-
bly also one of the causes of neuronal cell damage arising
after ischemia [146].

Protein synthesis

Control

Untreated

2hours
p P s %’@Wgw“m

2days

Barbiturate treated

Fig. 8. Autoradiographic evaluation of protein synthesis before (control) and at two recirculation times (2 h and 2 days) after 5 min bilateral carotid artery
occlusion in gerbil. Left: untreated animals. Right: treated animals (50 mg,/kg pentobarbital i.p., shortly after ischemia). Note similar reduction of protein
synthesis after 2 h of recirculation but recovery in al regions including CA1 sector in the barbiturate-treated animals after 2 days recovery (arrows) [146].
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Electron microscopic and biochemical studies have
shown that post-ischemic inhibition of protein synthesisis
accompanied by a disaggregation of the polyribosomes
[135,170,171]. This disaggregation seems to occur not
during but after ischemia, and involves a dissociation of
the monoribosomes into their smaller and larger subunits
[171]. Ribosomes disaggregate when starting a new
polypeptide chain takes longer than chain extension or
termination. The disaggregation of the polyribosomes can-
not occur during ischemia, because the breakdown of
energy metabolism hinders all stages of protein synthesis
(initiation, elongation and termination) [145]. However,
after ischemia, the regenerated energy metabolism reacti-
vates only the chain elongation and termination stages of
protein synthesis, and not initiation. This leads, inevitably
to a disaggregation of the polyribosomes and a sustained
inhibition of protein biosynthesis [146]. Recent research
suggests that the post-ischemic inhibition of protein syn-
thesis is based on a disturbance of calcium homeostasis in
the endoplasmic reticulum [265,266].

Finally, post-ischemic protein synthesis seems to be
involved in the cellular suicide programm known as apop-
tosis. This view is supported by studies showing that
apoptotic cell death could be prevented by application of
the protein synthesis inhibitor, cycloheximide [109].

8. Secondary cell damage during reperfusion

In cerebral tissue capable of regeneration after an is
chemic insult, energy metabolism can be seen to recover
rapidly [31,146]. A few hours later, however, the energy
status is diminished once again in the affected tissue
[43,269]. Simultaneously, a secondary cell oedema devel-
ops, followed a little later by epileptogenic activity that
can be monitored on EEG. These events are quite probably
brought about or modulated by oxygen radicals, nitric
oxide (NO), inflammatory reactions and excitatory amino
acids, particularly glutamate.

8.1. Oxygen radicals

During cerebral ischemia, the cut back in oxidative
phosphorylation rapidly diminishes reserves of high-en-
ergy phosphates. Within a few minutes, considerable
amounts of adenosine and hypoxanthine accumulate. Dur-
ing reperfusion these metabolic products are metabolised
further by xanthine oxidase to produce xanthine and uric
acid [211]. The activity of xanthine oxidase in the resting
brain is very low [3], but during cerebra ischemia a
massive conversion of xanthine dehydrogenase to xanthine
oxidase takes place, regulated by the calcium-dependent
protease calpain [169,211]. The breskdown of hypoxan-
thine by xanthine oxidase in the presence of oxygen,
produces a flood of superoxide radicals. These are then

converted by superoxide dismutase to hydrogen peroxide
[94,95]. By the Haber—Weiss reaction shown below, hy-
drogen peroxide and tissue iron can then combine to form
hydroxy! radicals.

hypoxanthine = xanthine + H,0O

xanthine— dehydrogenase

xanthine + NAD™* = uric acid
+NADH +H”*
i xanthine— oxidase . . — +
xanthine+ - O,- = uricacid+2- O, +2H

superoxide— dismutase

+0; + - 0; +4H" = 2H,0,

Haber—Weiss— reaction
EY

-0; +H,0, O,+OH + - OH"™

The so-called oxygen radicals then cause various forms
of tissue damage [76,77,127,218,322,342]. Similarly, the
increased rate of arachidonic acid metabolism in brain
tissue or activated leucocytes after ischemia can aso pro-
duce large amounts of oxygen radicals (Review: Ref.
[139)).

Numerous studies have shown that oxygen radicals play
an important role in processes leading to neurona cell
damage (Ref. [329], Review: Ref. [128]). In adult animals,
various degrees of neuroprotection against ischemic insults
can be achieved through the inhibition of xanthine oxidase
by application of oxygen radical scavengers and iron
chelators [18,40,56,125,172,191,209,223,267]. Oxygen
radicals also appear to be involved in mechanisms underly-
ing neurona cell death in immature animals. The rate of
lipid peroxidation was found to be considerably increased
after hypoxia in fetal guinea pigs and newborn lambs
[1,108,224]. The longer the gestationa age, the greater this
increase was [224]. Furthermore, marked production of
oxygen radicals was observed after hypoxia both in vitro,
in cultures of fetal neurones, and in vivo, in neonatal mice
[136,250]. There is also evidence that the infarct volume
can be reduced in a model of focal ischemia in neonatal
rats by application of allopurinol, an inhibitor of xanthine
oxidase and oxygen radical scavengers [256].

8.2. NO

NO is a free radical synthesized by NO-synthase in
endothelial cells and neurones in response to risesin levels
of intracellular calcium. Beside this endothelial and neu-
ronal form of NO-synthase, another form of the enzyme is
found in neutrophil granulocytes and microglia. This iso-
form can be stimulated by cytokines released by activated
macrophages. It is calcium-independent and can sustain
NO production for several days [236]. Beckman et al.,
however, demonstrated that NO and superoxide radicals
combine to produce peroxynitrite that spontaneously de-
composes to form hydroxyl radicals, nitrogen dioxide and
NO; [19,20]. Thus NO, like free iron, can raise the
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toxicity of superoxide radicals significantly by converting
them to highly potent radicals that cause considerable cell
damage [154].

During cerebral ischemia, a massive influx of intra-
cellular calcium takes place through various channels,
regulated, among other things, by the neurotransmitter
glutamate [63,304]. The rise in intracellular calcium acti-
vates NO-synthase [88,99], which produces NO, citrulline
and water from arginine, NADPH and oxygen.

NO - synthase
Arginine+ NADPH+H*+0, =

NO + Citrulline+ NADP*+ H,0

There is also an accumulation of cGMP [21]. Since
there is no oxygen available during ischemia, NO cannot
be synthesized until the reperfusion phase [21]. Likewise,
large numbers of superoxide radicals are produced by
xanthine oxidase and via other pathways in the mitochon-
dria during and, to an even greater extent, after ischemia
[199]. During reperfusion, NO and superoxide radicals
combine, as described above, to produce peroxynitrite,
leading to the formation of more potent radicals. Destruc-
tion of the tissue is the inevitable result [21]. Investigations
of the action of inhibitors of NO-synthase in models of
cerebral ischemia in adult animals have yielded highly
variable results [49,55,74,78,130,177,234,240,245,272,
297,357,358]. This can be explained by the fact that the
neuroprotective effect of NO-synthase blockers after is-
chemia, that is brought about by a lowering of NO produc-
tion and consequent reduction of the build-up of potent
radicals, is counteracted by a marked vasoconstriction
induced by the fall in NO concentration in endothelial cells
[75]. Thus, Huang et al. found markedly smaller infarct
loci after occlusion of the A. cerebri media in mice whose
expression of the neuronal form of NO-synthase had been
blocked than in the wild type of the animal [151]. The
same group was also able to protect the brain from is-
chemic insults by application of selective blockers of
neuronal NO-synthase [75].

To date, hardly any studies have investigated the impor-
tance of NO in neuronal cell death in neonates or fetuses.
After a hypoxic—ischemic insult in neonatal rats, a greater
number of neurones were found to contain NO-synthase
[141]. The activity of this NO-synthase, however, appeared
to be diminished [162]. Furthermore, two peaks of NO
production were detected in this animal model: one during
hypoxia and the other during the reoxygenation period.
The neuronal and the inducible form of NO-synthase
seems to be differently involved in this process [142].
Some authors succeeded in preventing ischemic lesions in
the brains of immature animals through application of
NO-blockers[13,129,330], while other research teams were
unable to achieve this effect or observed, instead, a wors-
ening of the damage [205,309]. As already mentioned, this
discrepancy may have arisen from the different effects of

NO-blockers on vascular endotheli and neurones. In our
investigations of the effect of blocking NO-synthase we
therefore by-passed the cardiovascular system, by carrying
out experiments on hippocampal dlices [38]. Although
post-ischemic NO-production could be completely blocked
with NO-inhibitors, this intervention had no influence on
the post-ischemic inhibition of protein biosynthesis, a pa-
rameter used as an early indicator of neurona cell death
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Fig. 9. (Top panel) cGMP concentrations in hippocampal slices from
mature fetal guinea pigs after different durations of in vitro ischemia
(10-40 min). A portion of the tissue slices was incubated for 30 min,
before, during and 10 min after ischemia, in 100 .M N-nitro-L-arginine
(NNLA). After 10 min recovery from 10 to 40 min of ischemia, a marked
rise in cGMP levels was observed in tissue slices that had not been
incubated in NNLA. Note that application of NNLA blocked the is-
chemia-induced elevation of cGMP amost completely. (Bottom panel)
Protein synthesis rate in hippocampal slices from mature fetal guinea pigs
after different durations of in vitro ischemia (20—-40 min) and a recovery
period of 12 h. A portion of the tissue slices was incubated in 100 wM
NNLA for 30 min before, during and 12 h after ischemia. Protein
synthesis rate was reduced to 50% of initial levels after 40 min ischemia.
Note that blocking of NO-synthase with NNLA did not improve the
post-ischemic recovery of protein synthesis. The statistical significance of
differences between groups was assessed by ANOVA and the Scheffe
post-hoc test (Top panel: P < 0.05 (ischemia vs. control), Bottom panel:
P < 0.05 (NNLA vs. without NNLA)) [38].
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(Fig. 9). Whether or not NO is directly involved in the
pathogenesis of neuronal cell death following ischemia in
fetuses therefore remains an open question.

8.3. Inflammatory reactions

As various studies have shown, ischemia and subse-
guent reperfusion can set off an inflammatory reaction in
the brain (Fig. 10) [91,288]. Expression of a wide variety
of cytokines, e.g., IL-1, IL-6, transforming growth factor-g3,
and fibroblast growth factor, was observed. In rats, mMRNA
of IL-1 was expressed within 15 min of global cerebra
ischemia [222]. Cytokines appear to be formed in activated
microglia [100,215,232]. They are thought to mediate the
migration of inflammatory cells within the reperfused tis-
sue.

Through increased expression of the adhesion molecules
P- and E-selectin and ICAM-1 on the endothelia cells and
of integrins on leukocytes, granulocytes become attached
to the endothelium, migrate through the vessel wall and
accumulate in the interstitium [90,110,132,210,251,259,
340]. There, after further activation by cytokines, they
synthesize oxygen radicals, especialy superoxide radicals
that proceed to damage neuronal tissue. The role of inflam-

0,~, HOCI

PROTEASES /

matory cells in the pathogenesis of secondary cell damage
was further elucidated in reperfusion experiments using
blood lacking granulocytes, or antibodies to adhesion
molecules and trials on transgenic mice [126,140,152,
200,278,338,355]. Especialy in the brain of immature
fetuses exposed to a severe intrauterine infection such
pathophysiological mechanisms appear to play a critical
role [113,354].

8.4. Glutamate

Williams et al. observed epileptiform activity in mature
sheep fetuses about 8 h after 30 min of globa cerebral
ischemia that reached a peak 10 h after the ischemic period
[350]. They were able to completely inhibit this epilepti-
form activity by application of the glutamate antagonist
MK-801, and show that the resulting brain damage was
markedly reduced in the treated animals (Fig. 11) [320].
This suggests that a secondary wave of glutamate release
or an imbalance between excitatory and inhibitory neuro-
transmitters during reperfusion may induce epileptiform
bursts of neuronal activity that can lead to an uncoupling
of cell metabolism and blood flow. This would automati-
caly impair pathways of energy metabolism and cause a
secondary wave of cell damage [148].
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Fig. 10. Mechanisms of recirculatory induced brain damage. Ischemia and recirculation are possible inductors of gene expression and formation of oxygen
radicals. Endothelium-derived oxygen radicals induce expression of adhesion molecules to alow granulocytes crossing the blood-brain barrier. The
formation of oxygen radicals, glutamate-induced excitotoxicity, and cytokines produced by activated microglia are damaging neurona cells. NGF, nerve
growth factor; BDNF, brain-derived neurotrophic factor; TGF, transforming growth factor; PAF, platelet-aggregating factor; ICAM-1, intercellular

adhesion molecule 1; IL, interleukin; ONOO™, Peroxynitrite [91].
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9. Apoptosis and post-ischemic genome expression membrane, condensation of chromatin and DNA fragmen-

tation induced by a calcium-dependent endonuclease (Fig.
It is still unclear whether secondary cell death after 12) [327]. In DNA electrophoresis, this fragmentation can

ischemia is necrotic or apoptotic. The latter condition is be recognised by a typical DNA ladder [178,192,214,327].
characterised by a shrinking of the cell, blessing of the cell In neuronal cell cultures, apoptosis can be prevented by
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Fig. 11. (a) Registration of electrocortikogramm (ECOG), nuchal electromyogramm (nuchal EMG) and arteria blood pressure (BP) in term fetal sheep 9 h
after 30 min of global cerebral ischemia. Note the absence of epileptogenic activity in treated (B; 0.3 mg,/kg MK-801 over 36 h starting 6 h after ischemia)
in contrast to untreated fetuses (A, B). (b) Neuronal cell damage 72 h after global cerebral ischemia of 30-min duration in term fetal sheep. Treated (0.3
mg,/kg MK-801 over 36 h starting 6 h after ischemia) vs. untreated fetuses. * P < 0.05; PSCX, parasagittal cortex; LTCX, lateral cortex; STR, striatum;
DG, dentate gyrus, CA1, 2, 3, 4 hippocampal sectors; THAL, thalamus; AMG, amygdala [320].
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Fig. 12. Apoptosis in neurona cell culture. (a) Illustration of an intact
neuron (arrowhead) and an apoptotic neuron with typical intracytoplasmic
vesicles (arrow). (b) Fluorescence staining of 10-day-old apoptotic neu-
rons which shows fragmentation of nuclel and condensation of chromatin
(arrows). (c) DNA-fragmentation in neurons illustrated by the TUNEL-
method [52].

post-ischemic inhibition of protein synthesis using cyclo-
heximide, or inhibition of RNA synthesis with actinomycin
or through inhibition of endonuclease with aurin tricar-
boxylic acid. In addition, the amount of apoptotic cell
death can also be reduced by inhibition of caspases in
neonatal rats after a hypoxic—ischemic insult [61]. These
findings all point towards the existence of a built-in cellu-
lar suicide programme [274,281]. It is also possible that the
form of secondary cell death following ischemia is deter-
mined by the severity of the primary insult. Thus, Dra

gunow et a. were able to demonstrate that delayed cell
death in immature rat brains subjected to a 15-min period
of hypoxic—ischemia was of an apoptotic nature, while
after a 60-min insult, the neuronal damage was predomi-
nantly necrotic [85]. Other investigators have also reported
correlations between the severity of the insult and the
extent of apoptotic cell death [190,216].

As has since been shown in numerous studies, including
some on immature animals, cerebral ischemia can induce
the expression of a whole series of proto-oncogenes
[44,82,92,137,173,233,308]. Proto-oncogenes themselves
code for proteins that act as transcription factors and
regulate the expression of genes modulating cell growth
and differentiation. They are also termed ‘immediate early
genes' since they are expressed within a few minutes of an
insult.

These include c-fos, c-jun, jun-B, jun-D. The transcrip-
tional activity of proteins of the fos-family is caused by a
heterodimer formation with proteins of the jun-family [194].
Fos- and jun-proteins can also form dimers with proteins
of the ATF- and CREB families and thereby increase their
promotor affinity [122].

As dready mentioned, transcription factors control the
expression of genes participating in cell growth and differ-
entiation. Depending on the severity of the insult, these
factors are therefore capable of initiating processes leading
to apoptotic cell death or triggering a recovery programme.
Recent research findings have indicated that the proto-
oncogenes and cell cycle-dependent proteins such as cyclin
D1 [325,349], and tumor suppressor genes such as p53 are
critically involved in this control function (Fig. 13). Thus,
the expression of the p53 gene was demonstrated in focal
cerebral ischemia or kainate-induced seizures causing neu-
ronal DNA lesions in the rat [189,290]. Weaker expression
of p53 in transgenic mice subjected to cerebral ischemia
was accompanied by a milder degree of brain damage [73].
As we know from other organ systems, p53 protein recog-
nizes and binds DNA-lesions, possibly straight onto its
C-terminal [155,186]. Furthermore, it acts as a transcrip-
tion factor, inducing the expresson of p21 [89], that
inhibits cyclin-dependent kinases [134]. p21, on the other
hand, restricts the ability of PCNA (proliferating cell nu-
clear antigen) to activate DNA polymerase & the principle
replicative DNA polymerase [341]. In apparent contradic-
tion with its role in suppressing cell proliferation via p21
expression, p53 aso increases the MRNA and protein for
cyclin D1. Cyclin D1 is a major effector of G1 phase entry
supporting the contention that besides its role in the cell
cycle, it may also be involved in p53-mediated apoptosis.

If lesion-induced signal transformation pathways or the
ectopic expression of growth factors, some of which are
potent mitogens, induce the expression of cell cycle com-
ponents in postmitotic neurons, the concomitant DNA
damage-induced p53 may halt or antagonize this pathway
leading to a possible conflict in decisions. p53-mediated
halt in replication may be associated with a p53-dependent
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Fig. 13. Diagram illustrating the central role of p53 in mediating DNA repair or apoptosis in neurons during and after cerebral ischemia [168]. Gadd45,
growth-arrest-and-DNA-damage-inducible; cdk4, cyclin D-dependent kinase; for further abbreviations see text.

transactivation of the ubiquitously expressed mammalian
gene Gadd45 (growth-arrest-and-DNA-damage-inducible)
[167]. Its product is involved in DNA repair and interacts
with PCNA. PCNA is implicated in replication of cellular
DNA, but is also required for DNA excision repair
[300,307]. Besides p53, PCNA, Gadd45, and p21 are also
induced in brain pathologies suggesting that some of the
molecular mechanisms referred to in non-neural cells, may
also hold true in the brain. Depending upon the develop-
mental stage of the injured brain and the extent of cell
damage on the one hand, and upon damage-induced p53
expression on the other, neurons may attempt cell cycle
entry, a process that will involve a certain amount of DNA
repair, or may only attempt transcription-coupled DNA
repair. The cell death decision may result from the impos-
sibility to proceed with both processes. Indeed, it has
recently been shown in vitro that the p53 transcription
factor, besides its role in halting replication while favoring
repair, attenuates Bcl-2 expression, and is a direct tran-
scriptional activator of the Bax gene, whose product is
shown to induce apoptosis [9,168,227—229,275].

10. Therapeutic strategies
Despite the critical clinical and socio-economic conse-

guences of perinatal brain damage, no effective therapeutic
strategies have yet been developed to prevent its causes.

However, as already mentioned, some promising possibili-
ties have been revealed through animal experiments that
could be developed and tested in clinical studies. Since a
significant proportion of neuronal cell damage is brought
about by pathophysiological processes that first begin sev-
era hours or even days after an ischemic insult (see
Sections 8 and 9), the setting up of a therapeutic window
would be feasible. In the following passages, current thera-
peutic concepts will be described by which neuroprotec-
tion has been achieved in animal models.

10.1. Hypothermia

The induction of mild hypothermia has raised interest-
ing possihilities for neuroprotection from cerebral ischemia
(Review: Ref. [203]). Various publications dating back to
the 1950s, have described the therapeutic benefits of hy-
pothermia in brains subjected to a wide variety of insults
including brain trauma [264,295], cerebral haemorrhage
[150], cardiac arrest [26], carbon monoxide poisoning [71],
neonatal asphyxia [346] and seizures [48]. Based on these
findings, routine induction of hypothermia was introduced
early on in heart and brain surgery to protect the brain in
the event of iatrogenic intraoperative cardiac arrest
[47,86,188,197,237]. Over the last few years, induction of
mild hypothermia has been examined once again as a
means of protecting the brain from ischemically induced
damage. Experimental studies on adult animals have shown
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Table 4

Protein synthesis rate as percentage of control in hippocampal slices from
mature fetal guinea pigs 12 h after in vitro ischemia. Hypothermia was
induced by lowering the incubation temperature from 37° to 33° [37].
Values are given as mean+ S.D.

Percentage control

Normothermia Hypothermia
Control 100.0+16.5 100.0+12.1
Ischemia 10 min 91.74+12.6 114.8+11.5°
Ischemia 20 min 67.8+8.72 95.1+9.2°
Ischemia 30 min 61.5+15.9? 85.8+3.1°
Ischemia 40 min 50.8+ 14.1% 78.2+19.23P

#P < 0.05 (ischemia vs. control).
PP < 0.05 (normothermia vs. hypothermia).

that lowering of the brain temperature by 3—4°C during
global cerebra ischemia reduces neuronal cell damage
dramatically [53,67,111,345,348]. Furthermore, the treated
animals were found to perform better than controls in
subsequent learning and behavioural tests [111].

The author’s research team was aso able to demon-
strate a neuroprotective effect of mild hypothermiain fetal
brain tissue subjected to ischemic insults. They found that
the post-ischemic recovery of protein synthesis and energy
metabolism in hippocampal slices from mature guinea pig
fetuses was considerably improved, in comparison to con-
trols, by induction of mild hypothermia (Table 4) [32,37].
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In a recently published study, Gunn et al. described the
effects of moderate hypothermia in sheep fetuses subjected
to severe global cerebral ischemia in utero [117]. Hy-
pothermia was initiated during the reperfusion phase, 90
min after induction of 30 min of ischemia, in a four-vessel
occlusion model, and maintained for 72 h. By this method,
it was possible to reduce the extent of neurona cell
damage in areas of the cortex cerebri by up to 60% (Fig.
14) [117]. Even if hypothermia was started 5.5 h after
ischemia, neuroprotection could be observed in this animal
model [119]. Based on these results, many authors now
consider the induction of hypothermia during and particu-
larly after a hypoxic—ischemic insult to be an effective
therapeutic strategy [54,117]. In fact, Gunn et al. demon-
strated in a recent clinical study that selective head cooling
in newborn infants after perinatal asphyxia is a safe and
convenient method of quickly reducing brain temperature
[118].

The mechanisms underlying the neuroprotective effect
of mild hypothermia are still unclear (Review: Ref. [203)).
For a long time, it was assumed that hypothermia exerted
its effect by reducing cerebral oxygen consumption [23,41]
and a delayed emptying of energy stores during ischemia
[175,219,220,311,312]. However, this hypothesis could not
be confirmed in experiments on hippocampal slices. The
fall in ATP levels during ischemia did not correlate with
the post-ischemic inhibition of protein synthesis, a parame-

Fig. 14. (ab) Section of the parasagittal cortex in (370-fold magnification) in term fetal sheep 5 days after 30 min of cerebral ischemia followed by
normothermia (a) or mild hypothermia (b). (2) Complete neuronal necrosis (normothermic group). (b) Minor degree of neuronal cell damage (hypothermic

group) [117].
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ter taken as a measure of neuronal cell damage [37].
Whether the effect of mild hypothermia can be explained
by an improved recovery of energy metabolism directly
after ischemia is also debatable. Chopp et a. found only a
minimal improvement in concentrations of creatine phos-
phate and ATP after induction of mild hypothermia in rats
subjected to global cerebral ischemia [64]. Nor, as in vitro
experiments have demonstrated, can modulation of cere-
bral flow after ischemia be the sole basis of the neuropro-
tective effect of hypothermia[37]. Although the release of
excitatory amino acids both during and after ischemia is
prevented by mild hypothermia [54,106], it remains un-
clear whether these findings are simply an epiphenomenon
or the true basis of hypothermia's neuroprotective effect
[37]. Other effects that appear to be associated with the
therapeutic induction of mild hypothermia after cerebral
ischemia are: reduced oxygen radical formation [60,104], a
stabilisation of the blood-brain barrier [83] and a modifica
tion of enzyme activation [57,66,353], etc.

10.2. Pharmacological intervention

Now that the pathophysiological mechanisms underly-
ing neuronal cell damage are better understood, diverse
possibilities present themselves for pharmacological inter-
vention. Interest is currently focused on the administration
of oxygen radical scavengers, NO inhibitors, glutamate
antagonists, calcium antagonists, growth factors and anti-
cytokines. Table 5 presents all the potential neuroprotec-
tive substances currently under investigation (modified
according to Ref. [335]).

10.3. Magnesium

The last interesting therapeutic approach to be discussed
emerged from a retrospective analysis carried out by Nel-
son and Grether. Recently, in a population of 155,636
infants, these authors showed that ante-partum application
of magnesium considerably lowered the incidence of cere-
bral palsy in newborns weighing less than 1500 g [238].
The incidence of moderate to severe cerebral palsy was
4.8% in this group. Seventy-five matched pairs were com-
pared with the 42 children suffering from cerebral palsy. In
the control group, 36% of the children had been treated
with magnesium, whereas, in the group with cerebral palsy
only 7% had been treated. This difference was statistically
highly significant (Fig. 15). The same effect could be
observed in the children of patients not suffering from
pre-eclampsia. The protective effect of magnesium was
independent of variables such as the administration of
tocolytic agents or drugs to accelerate fetal lung develop-
ment or any other maternal or fetal risk factors. Almost
identical results were recently obtained in a retrospective
study carried out by Schendel et al. [292].

As numerous animal experiments, both in vivo and in
vitro have shown, magnesium can reduce the extent of

ischemically induced neurona cell damage [165,166,
213,284,332]. This neuroprotective effect could be based
on a number of pathophysiological mechanisms, one being
the well-known vasodilatory properties of magnesium as a
calcium antagonist [6,273,296,317]. It has also been estab-
lished that hypoxic—ischemic brain damage is partly caused
by the intracerebral release of excitatory amino acids [286].
Magnesium may protect neurones from anoxic damage by
preventing the presynaptic release of these substances
[166,284]. The massive intracellular influx of calcium that
takes place during ischemia plays a key role in the devel-
opment of neuronal cell damage [62,304]. Magnesium
blocks the glutamate-controlled NMDA receptor [201,244]
as well as voltage-dependent calcium channels, hindering
the influx of extracellular calcium into the neurons. The
activation of numerous calcium-dependent proteases, li-
pases and endonucleases is thereby counteracted. As al-
ready mentioned, the release of excitatory amino acids
during and after cerebral ischemia in damaged brain re-
gions can lead to epileptiform activity. This, in turn, can
create an imbaance between blood flow and cell
metabolism, causing brain damage [148]. Magnesium has
proven anti-convulsive properties [292], that can diminish
epileptiform activity and thus reduce the extent of possible
brain damage. The lowering of the rate of cell metabolism
has been put forward as another possible explanation of
the neuroprotective effect of magnesium [166,314].

In the United States, magnesium has been administered
for over 20 years for treatment of premature contractions
and pre-eclampsia [69,301]. Magnesium crosses the pla-
cental barrier and enters the fetal blood plasma [72,112].
The concentration in the fetal blood plasma corresponds
roughly to that in the maternal plasma[72,112]. Very high
magnesium levels can lead to a temporary lowering of
muscle tone, weakened reflexes and respiratory depression
in the newborn. Serious complications in either the infant
or mother are, however, extremely rare [193]. The Collabo-
rative Eclampsia Trial showed that infants of mothers
treated with magnesium for EPH gestosis are less fre-
guently intubated or transferred to the children’s hospital
for intensive care than those whose mothers received
phenytoin [323]. However, a recently published study de-
scribed for the first time an increased child mortality after
pregnancies in which expectant mothers were treated with
i.v. magnesium [226]. However, a large percentage of
these infants died after the neonatal period. Some of the
deaths were caused by feto-fetal transfusion syndrome in
twins or congenital abnormalities, making any causative
link between the magnesium therapy given during preg-
nancy and these fatalities quite unlikely. This has been
confirmed by a new retrospective analysis carried out by
Grether et al. [114].

To date, research findings strongly suggest that admin-
istration of magnesium can lower the incidence of cerebral
palsy in immature neonates weighing less than 1500 g.
However, the consistency of this therapeutic effect still
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Magnesium Therapy
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Fig. 15. Incidence of cerebral palsy in very low birth weight children
(<1500 g) at the age of 3 years. Note that the incidence of cerebral palsy
in children from women with ante-natal magnesium therapy was much
lower than in those without magnesium therapy (7% vs. 36%; **P < 0.01)
[238].

needs to be demonstrated in multicentre randomised,
double-blind studies.

11. Conclusion

Perinatal brain damage in the mature fetus is usually
brought about by severe intrauterine asphyxia following an
acute reduction of the uterine or umbilical circulation.
Owing to the acute reduction in oxygen supply, oxidative
phosphorylation in the brain comes to a standstill. The
Na*/K* pump at the cell membrane has no more energy
to maintain the ionic gradients. In the absence of a mem-
brane potential, large amounts of calcium ions flow through
the voltage-dependent ion channel, down an extreme extra-
/intracellular concentration gradient, into the cell. Addi-
tionally to the influx of calcium ions into the cells via
voltage-dependent calcium channels, calcium also enters
the cells through glutamate-regulated ion channels. Current
research suggests that the excessive increase in levels of
intracellular calcium, so-called calcium overload, leads to
cell damage through the activation of proteases, lipases
and endonucleases. A second wave of neuronal cell dam-
age occurs during the reperfusion phase. This cell damage
is thought to be caused by the post-ischemic inhibition of
protein synthesis, release of oxygen radicals, synthesis of
NO, inflammatory reactions and an imbalance between the
excitatory and inhibitory neurotransmitter systems. Part of
the secondary neuronal cell damage may be caused by
induction of a kind of cellular suicide programme known
as apoptosis. Knowledge of these pathophysiologica
mechanisms has enabled scientists to develop new thera

peutic strategies with successful results in animal experi-
ments. Of these i.v. administration of magnesium and
post-ischemic induction of cerebral hypothermia may be-
come clinical relevance over the next years.
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